Publications

Postdoctoral and graduate work


24. J.-H. Pöhls (co-corresponding author), M. MacIver, S. Chanakian, A. Zevalkink, Y.-C. Tseng, Y. Mozharivskyj, "Enhanced Thermoelectric Efficiency through Li-Induced Phonon Softening in CuGaTe2," Chem. Mater. 2022, 34, 19, 8719–8728.


23. C.-w. T. Lo, J.-H. Pöhls, M. Johnson, T. Kolodiazhnyi, J.F. Britten, Y.-C. Tseng, Y. Mozharivskyj, "Comparative study of the Zn1-xCdxSb and (Zn1-zCdz)13Sb10 solid solution series," J. Solid State Chem. 2022, 315, 123448.


22. J.-H. Pöhls (corresponding author), Y. Mozharivskyj, "TOSSPB: Thermoelectric optimization based on scattering-dependent single-parabolic band model," Comput. Mater. Sci. 2022, 206, 111152.


21. L.P.R. de Cotret, M.R. Otto, J.-H. Pöhls, Z. Luo, M.G. Kanatzidis, B.J. Siwick, "Direct visualization of polaron formation in the thermoelectric SnSe," PNAS 2022, 119, 3, e2113967119.


20.  J.-H. Pöhls, “A new approach finds materials that can turn waste heat into electricity,” OpEd in The Conversation (December 16th, 2021).


19. M.R. Otto, J.-H. Pöhls, L.P.R. de Cotret, M.J. Stern, M. Sutton, B.J. Siwick, “Mechanisms of electron-phonon coupling unraveled in momentum and time: The case of soft-phonons in TiSe2,Sci. Adv. 2021, 7, eabf2810.


18. J.-H. Pöhls, S. Chanakian, J. Park, A. M. Ganose, A. Dunn, N. Friesen, A. Bhattacharya, B. Hogan, S. Bux, A. Jain, A. Mar, A. Zevalkink, “Experimental Validation of High Thermoelectric Performance in RECuZnP2 Predicted by High-Throughput DFT Calculations,” Mater. Horiz. 2021, 8, 209-215.


17. J.-H. Pöhls (co-corresponding author), M. Heyberger, A. Mar, “Comparison of computational and experimental inorganic crystal structures,” J. Solid State Chem. 2020, 290, 121557.


16. L.P.R. de Cotret, J.-H. Pöhls, M.J. Stern, M.R. Otto, M. Sutton, B.J. Siwick, “Time-and momentum-resolved phonon spectroscopy with ultrafast electron diffuse scattering,” Phys. Rev. B 2019, 100, 214115 (Editors' Suggestion).


15. J.-H. Pöhls, A. Mar, “Thermoelectric properties of inverse perovskites A3TtO (A = Mg, Ca; Tt = Si, Ge): Computational and experimental investigations,” J. Appl. Phys. 2019, 126, 025110.


14. J.J. Kuo, U. Aydemir, J.-H. Pöhls, F. Zhou, G. Li, A. Faghaninia, F. Ricci, M.A. White, G. Hautier, A. Jain, G.J. Snyder, “Origins of ultralow thermal conductivity in 1-2-1-4 quaternary selenides,” J. Mater. Chem. A 2019, 7, 2589-2596.


13. J.-H. Pöhls, F. Schütt, C. O’Neill, S. Shree, M.B. Johnson, Y.M. Kumar, R. Adelung, M.A. White, “Comparison of Thermal and Electrical Properties in Multi-Walled Carbon Nanotube-coated ZnO Tetrapods and Multi-Walled Carbon Nanotube Tubes”, Carbon 2019, 144, 423-432.


12. Y. Zhou, A. M. Askar, J.-H. Pöhls, A. K. Iyer, A. O. Oliynyk, K. Shankar, A. Mar, “Hexagonal Double Perovskite Cs2CrAgCl6,” Z. Anorg. Allg. Chem. 2019, 645, 323-328.


11. J.-H. Pöhls, Z. Luo, U. Aydemir, J.-P. Sun, S. Hao, J. He, I. G. Hill, G. Hautier, A. Jain, X. Zeng, C. Wolverton, G. J. Synder, H. Zhu, M. A. White, “First-Principles Calculations and Experimental Studies of XYZ2 Thermoelectric Compounds:  Detailed Analysis of van der Waals interactions”, J. Mater. Chem. A 2018, 6, 19502-19519.


10. W. Yin, D. Zhang, M. Zhou, A. K. Iyer, J.-H. Pöhls, J. Yao, A. Mar, “Quaternary rare-earth selenides Ba2REGaSe5 and Ba2REInSe5”, J. Solid State Chem. 2018, 265, 167-175.


9.  J.-H. Pöhls, A. Faghaninia, G. Petretto, U. Aydemir, F. Ricci, G. Li, M. Wood, S. Ohno, G. Hautier, G. J. Snyder, G.-M. Rignanese, A. Jain, M. A. White, “Metal Phosphides as Potential Thermoelectric Materials,” J. Mater. Chem. C 2017, 5, 47, 12441-12456.


8.  S.D. Kang, J.-H. Pöhls, U. Aydemir, P. Qiu, C. C. Stompous, R. Hanus, M.A. White, X. Shi, L. Chen, M. G. Kanatzidis, G. J. Snyder, “Enhanced stability and  thermoelectric figure-of-merit in copper selenide by lithium doping,” Mater. Today Phys. 2017, 1, 7-13.


7.  S. Ohno, U. Aydemir, M. Amsler, J.-H. Pöhls, S. Chanakian, A. Zevalkink, M. Wood, M.A. White, S.K. Bux, C. Wolverton, G. J. Snyder, “Achieving zT > 1 in inexpensive Zintl phase Ca9Zn4+xSb9 by phase boundary mapping,” Adv. Func. Mater. 2017, 27, 1606361.


6.  J.-H. Pöhls, M.B. Johnson, M.A. White, “Origins of ultralow thermal conductivity in bulk [6,6]-phenyl-C61-butyric acid methyl ester (PCBM),” Phys. Chem. Chem. Phys. 2016, 18, 1185-1190.


5.  W. Chen, J.-H. Pöhls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z. M. Gibbs, H. Zhu, M. Asta, G. J. Snyder, B. Meredig, M.A. White, K. Persson, A. Jain, “Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment,” J. Mater. Chem. C 2016, 4, 4414- 4426.


4.  U. Aydemir, J.-H. Pöhls, H. Zhu, G. Hautier, S. Bajaj, Z.M. Gibbs, W. Chen, G. Li, S. Ohno, D. Broberg, S.D. Kang, M. Asta, G. Ceder, M.A. White, K. Persson, A. Jain, G. J. Snyder, “YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure,” J. Mater. Chem. A 2016, 4, 2461-2472 (2016 Journal of Materials Chemistry A HOT Papers).


3.  H. Zhu, G. Hautier, U. Aydemir, Z.M. Gibbs, G. Li, S. Bajaj, J.-H. Pöhls, D. Broberg, W. Chen, A. Jain, M.A. White, M. Asta, G. J. Snyder, K. Persson, G. Ceder, “Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening,” J. Mater. Chem. C 2015, 3, 10554-10565.


2.  R. Abdelaziz, D. Disci-Zayed, M.K. Hedayati, J.-H. Pöhls, A.U. Zillohu, B. Erkartal, V.S.K. Chakravadhanula, V. Duppel, L. Kienle, M. Elbahri, “Green chemistry and nanofabrication in a levitated Leidenfrost drop,” Nat. Commun. 2013, 4, 2400.


1.  J.-H. Pöhls, M.B. Johnson, M.A. White, R. Malik, B. Ruff, C. Jayasinghe, M. Schulz, V. Shanov, “Physical Properties of Carbon Nanotube Sheets Drawn from Nanotube Arrays,” Carbon 2012, 50, 4175-4183.

Carroll-Pöhls Lab

Jan.Pohls@UNB.Ca

Last Update: November 14, 2024